Year |
First_Author |
Laboratory |
Title |
PubMed_id |
DOI |
2014 |
Wang, M. |
Tang, Z |
In vitro selection of DNA-cleaving deoxyribozyme with site-specific thymidine excision activity. |
25030901 |
10.1093/nar/gku592 |
2019 |
Dastjerdi-Khorzoghi, P. |
Javadi-Zarnaghi, F |
Targeting a viral DNA sequence with a deoxyribozyme in a preparative scale |
31377192 |
10.1016/j.biochi.2019.07.022 |
2012 |
Xiao, Y. |
Silverman, S. K |
Establishing broad generality of DNA catalysts for site-specific hydrolysis of single-stranded DNA |
22021383 |
10.1093/nar/gkr860 |
2010 |
Xiao, Y. |
Silverman, S. K |
Functional Compromises among pH Tolerance, Site Specificity, and Sequence Tolerance for a DNA-Hydrolyzing Deoxyribozyme |
20923239 |
10.1021/bi1013672 |
2011 |
Xiao, Y. |
Silverman, S. K |
Merely two mutations switch a DNA-hydrolyzing deoxyribozyme from heterobimetallic (Zn 2+ /Mn 2+ ) to monometallic (Zn 2+ -only) behavior |
21125108 |
10.1039/c0cc04575f |
2009 |
Chandra, M. |
Silverman, S. K |
DNA-catalyzed sequence-specific hydrolysis of DNA |
19684594 |
10.1038/nchembio.201 |
2007 |
Kim, H. K. |
Lu, Y. |
Dissecting metal ion–dependent folding and catalysis of a single DNAzyme |
17965708 |
10.1038/nchembio.2007.45 |
2016 |
Wang, M. Q. |
Wang, M. Q. |
Characterization of deoxyribozymes with site-specific oxidative cleavage activity against DNA obtained by in vitro selection |
26809730 |
10.1039/c6ob00148c |
2013 |
Gu, H. |
Breaker, R. R |
Small, Highly Active DNAs That Hydrolyze DNA |
23679108 |
10.1021/ja403585e |
2013 |
Liu, Y. |
He, J. |
Breaking the conservation of guanine residues in the catalytic loop of 10–23 DNAzyme by position-specific nucleobase modifications for rate enhancement |
23615852 |
10.1039/c3cc42067a |
2017 |
Lee, Y. |
Silverman, S. K |
DNA-Catalyzed DNA Cleavage by a Radical Pathway with Well-Defined Products |
27935689 |
10.1021/jacs.6b10274 |
2012 |
Dokukin, V. |
Silverman, S. K |
Lanthanide ions as required cofactors for DNA catalysts |
23243490 |
10.1039/C2SC01067D. |
1998 |
Carmi, N. |
Breaker, R. R |
Cleaving DNA with DNA |
9482868 |
10.1073/pnas.95.5.2233 |
2001 |
Carmi, N. |
Breaker, R. R |
Characterization of a DNA-Cleaving deoxyribozyme |
11557347 |
10.1016/s0968-0896(01)00035-9 |
2015 |
Zhu, J. |
He, J. |
Studies on the preferred uracil-adenine base pair at the cleavage site of 10-23 DNAzyme by functional group modifications on adenine |
26145822 |
10.1016/j.bmc.2015.06.041 |
2000 |
CAIRNS, M. J. |
CAIRNS, M. J. |
The influence of arm length asymmetry and base substitution on the activity of the 10-23 DNA enzyme |
11079572 |
10.1089/oli.1.2000.10.323 |
2003 |
CAIRNS, M. J. |
CAIRNS, M. J. |
Optimisation of the 10-23 DNAzyme-substrate pairing interactions enhanced RNA cleavage activity at purine-cytosine target sites. |
12771215 |
10.1093/nar/gkg378 |
1997 |
Santoro, S. W. |
Joyce, G.F |
A general purpose RNA-cleaving DNA enzyme |
9113977 |
10.1073/pnas.94.9.4262 |
2010 |
Gerasimova, Y. V. |
Kolpashchikov, D. M. |
Nucleic acid detection using MNAzymes |
20189100 |
10.1016/j.chembiol.2010.02.003 |
2008 |
Schlosser, K. |
Li, Y. |
Sequence-function relationships provide new insight into the cleavage site selectivity of the 8–17 RNA-cleaving deoxyribozyme |
18203744 |
10.1093/nar/gkm1175 |
2014 |
Huang, P. J. J. |
Liu, J. |
Ultrasensitive DNAzyme Beacon for Lanthanides and Metal Speciation |
24383540 |
10.1021/ac403762s |
2014 |
Li, Z. |
He, J. |
Position-specific modification with imidazolyl group on10–23 DNAzyme realized catalytic activity enhancement |
24961875 |
10.1016/j.bmc.2014.05.070 |
2000 |
Li, J |
Lu, Y. |
In vitro selection and characterization of a highly efficient Zn(II)-dependent RNA-cleaving deoxyribozyme |
10606646 |
10.1093/nar/28.2.481 |
2013 |
Parker, D. J. |
Silverman, S. K. |
DNA Catalysis of a Normally Disfavored RNA Hydrolysis Reaction |
23697866 |
10.1021/ja4032488 |
2017 |
Kasprowicz, A. |
Ciesiołka, J. |
Characterization of Highly Efficient RNA-Cleaving DNAzymes that Function at Acidic pH with No Divalent Metal-Ion Cofactors |
28168150 |
10.1002/open.201600141 |
1998 |
Roth, A. |
Breaker, R. R. |
An amino acid as a cofactor for a catalytic polynucleotide |
9600911 |
10.1073/pnas.95.11.6027 |
2016 |
Saran, R. |
Liu, J. |
A Silver DNAzyme |
26977895 |
10.1021/acs.analchem.6b00327 |
1994 |
Breaker, R. R. |
Joyce, G. F. |
A DNA enzyme that cleaves RNA |
9383394 |
10.1016/1074-5521(94)90014-0 |
2018 |
Sednev, M. V. |
Höbartner, C. |
N6-Methyladenosine-Sensitive RNA-Cleaving Deoxyribozymes |
30276938 |
10.1002/anie.201808745 |
2020 |
Liaqat, A. |
Höbartner, C. |
N6-isopentenyladenosine in RNA determines the cleavage site of endonuclease deoxyribozymes |
32681686 |
10.1002/anie.202006218 |
2019 |
Ma, L. |
Liu, J. |
An in Vitro-Selected DNAzyme Mutant Highly Specific for Na under Slightly Acidic Conditions. |
29989277 |
10.1002/cbic.201800322 |
2015 |
Huang, P. J. J. |
Liu, J. |
A new heavy lanthanide-dependent DNAzyme displaying strong metal cooperativity and unrescuable phosphorothioate effect |
25488814 |
10.1093/nar/gku1296 |
2014 |
Huang, P. J. J. |
Liu, J. |
In Vitro Selection of a New Lanthanide-Dependent DNAzyme for Ratiometric Sensing Lanthanides |
25199650 |
10.1021/ac5029962 |
2019 |
Wang, Y. |
Yu, H. |
A Novel small RNA-Cleaving Deoxyribozyme with a short Binding Arm |
31160698 |
10.1038/s41598-019-44750-x |
2014 |
Xu, J. |
Jiang, D. |
Engineering a DNA-cleaving DNAzyme and PCR into a simple sensor for zinc ion detection |
24677031 |
10.1007/s00216-014-7732-9 |
2006 |
Hou, W. |
Wo, J. |
Inhibition of hepatitis B virus X gene expression by 10-23 DNAzymes |
16930733 |
10.1016/j.antiviral.2006.07.001 |
2020 |
Alon, D. |
Elbaz, J. |
Engineering a DNAzyme-Based Operon System for the Production of DNA Nanoscaffolds in Living Bacteria |
31992039 |
10.1021/acssynbio.9b00415 |
2020 |
Guillen, D. |
Ouellet, J. |
A simple and affordable kinetic assay of nucleic acids with SYBR Gold gel staining |
32126098 |
10.1371/journal.pone.0229527 |
2018 |
Du, X. |
Gu, H. |
Retraining and Optimizing DNA-hydrolyzing Deoxyribozymes for Robust Single- and Multiple-turnover Activities |
|
10.1021/acscatal.8b01466 |
2014 |
Furukawa, K. |
Minakawa, N. |
Allosteric control of a DNA-hydrolyzing deoxyribozyme with short oligonucleotides and its application in DNA logic gates |
24740418 |
10.1039/c4ob00451e |
2020 |
Cao, D. |
Jiang, D. |
Characterization of a DNA-hydrolyzing DNAzyme for generation of PCR strands of unequal length |
33022314 |
10.1016/j.biochi.2020.10.001 |
2016 |
Ma, L. |
Liu, J. |
DNA Adsorption by ZnO Nanoparticles near Its Solubility Limit: Implications for DNA Fluorescence Quenching and DNAzyme Activity Assays |
27166701 |
10.1021/acs.langmuir.6b00906 |
2017 |
Dhamodharan, V. |
Yokobayashi, Y. |
Large Scale Mutational and Kinetic Analysis of a Self-Hydrolyzing Deoxyribozyme |
29058875 |
10.1021/acschembio.7b00621 |
2013 |
Gu, H. |
Breaker, R. R. |
Production of single-stranded DNAs by self-cleavage of rolling-circle amplifcation products |
23750543 |
10.2144/000114009 |
2015 |
Liu, C. |
Jiang, D. |
A glucose oxidase-coupled DNAzyme sensor for glucose detection in tears and saliva |
25863343 |
10.1016/j.bios.2015.03.070 |
2010 |
Jiang, D. |
Zhang, J. |
An allosteric DNAzyme with dual RNA-cleaving and DNA-cleaving activities |
20553490 |
10.1111/j.1742-4658.2010.07669.x |
2006 |
Chen, X. |
He, L. |
Construction of Molecular Logic Gates with a DNA-Cleaving Deoxyribozyme |
16470893 |
10.1002/anie.200502511 |
2020 |
Yu, W. |
Jiang, D. |
Insight into an Oxidative DNA-Cleaving DNAzyme: Multiple Cofactors, the Catalytic Core Map and a Highly Efficient Variant |
33083724 |
10.1016/j.isci.2020.101555 |
2017 |
Sun, Y. |
Jiang, D. |
New cofactors and inhibitors for a DNA-cleaving DNAzyme: superoxide anion and hydrogen peroxide mediated an oxidative cleavage process |
28336968 |
10.1038/s41598-017-00329-y |
2017 |
Wang, S. |
Jiang, D. |
The Triple Roles of Glutathione for a DNA-Cleaving DNAzyme and Development of a Fluorescent Glutathione/Cu2+-Dependent DNAzyme Sensor for Detection of Cu2+ in Drinking Water |
28723208 |
10.1021/acssensors.6b00667 |
2021 |
Pan, J. |
Chen, J. |
Dual recognition element-controlled logic DNA circuit for COVID-19 detection based on exonuclease III and DNAzyme |
33410447 |
10.1039/d0cc06799g |
2002 |
Ferrari, D. |
Peracchi, A. |
A continuous kinetic assay for RNA-cleaving deoxyribozymes, exploiting ethidium bromide as an extrinsic fluorescent probe |
12384614 |
10.1093/nar/gnf111 |
2002 |
Wang, D. |
Sen, D. |
A General Strategy for Effector-mediated Control of RNA-cleaving Ribozymes and DNA Enzymes |
12054766 |
10.1016/S0022-2836(02)00046-3 |
2010 |
Lan, T. |
Lu, Y. |
A highly selective lead sensor based on a classic lead DNAzyme |
20407665 |
10.1039/b926910j |
2003 |
Brown, A. |
Lu, Y. |
A Lead-Dependent DNAzyme with a Two-Step Mechanism |
12795611 |
10.1021/bi027332w |
2005 |
Peracchi, A. |
Peracchi, A. |
A Mutational Analysis of the 8–17 Deoxyribozyme Core |
16125199 |
10.1016/j.jmb.2005.07.059 |
2011 |
He, J. |
Liu, K. |
A novel strategy of chemical modification for rate enhancement of 10–23 DNAzyme: a combination of A9 position and 8-aza-7-deaza-2¢-deoxyadenosine analogs |
21717014 |
10.1039/c1ob05065f |
2009 |
Mazumdar, D. |
Lu, Y. |
Activity, Folding and Z-DNA Formation of the 8-17 DNAzyme in the Presence of Monovalent Ions |
19326878 |
10.1021/ja8082939 |
2020 |
Rudeejaroonrung, K. |
Maruyama, A. |
Cationic copolymer enhances 8–17 DNAzyme and MNAzyme activities |
32458899 |
10.1039/d0bm00428f |
2004 |
Cruz, R. P. |
Li, Y. |
Dinucleotide Junction Cleavage Versatility of 8-17 Deoxyribozyme |
15112995 |
10.1016/j.chembiol.2003.12.012 |
2017 |
Liu, M. |
Li, Y. |
Discovery and Biosensing Applications of Diverse RNA-Cleaving DNAzymes |
28805376 |
10.1021/acs.accounts.7b00262 |
2009 |
Schlosser, K. |
Li, Y. |
DNAzyme-mediated catalysis with only guanosine and cytidine nucleotides |
19050014 |
10.1093/nar/gkn930 |
2007 |
Chiuman, W. |
Li, Y. |
Efficient signaling platforms built from a small catalytic DNA and doubly labeled fluorogenic substrates |
17169997 |
10.1093/nar/gkl1056 |
2007 |
Leung, E. |
Sen, D. |
Electron Hole Flow Patterns through the RNA-Cleaving 8-17 Deoxyribozyme Yield Unusual Information about Its Structure and Folding |
17254951 |
10.1016/j.chembiol.2006.11.006 |
2018 |
Cepeda-Plaza, M. |
Lu, Y. |
Evidence of a General Acid−Base Catalysis Mechanism in the 8−17 DNAzyme |
29389111 |
10.1021/acs.biochem.7b01096 |
2003 |
Chakraborti, S. |
Banerjea, A. C. |
Identification of Cleavage Sites in the HIV-1 TAR RNA by 10-23 and 8-17 Catalytic Motif Containing DNA Enzymes |
12741771 |
10.1021/bm025698i |
2003 |
Flynn-Charlebois, A. |
Silverman, S. K. |
In Vitro Evolution of an RNA-Cleaving DNA Enzyme into an RNA Ligase Switches the Selectivity from 3′-5′ to 2′-5′ |
12720447 |
10.1021/ja0340331 |
2010 |
Lam, J. C. |
Li, Y. |
Influence of Cleavage Site on Global Folding of an RNACleaving DNAzyme |
20665772 |
10.1002/cbic.201000144 |
2004 |
Bonaccio, M. |
Peracchi, A. |
Kinetic and thermodynamic characterization of the RNA-cleaving 8-17 deoxyribozyme |
14963261 |
10.1093/nar/gkh250 |
2017 |
Peracchi, A. |
Peracchi, A. |
Local conformational changes in the 8–17 deoxyribozyme core induced by activating and inactivating divalent metal ions |
29022640 |
10.1039/c7ob02001e |
2019 |
Xiao, L. |
Xiang, Y. |
Orthogonal Activation of RNA-Cleaving DNAzymes in Live Cells by Reactive Oxygen Species |
31314942 |
10.1002/anie.201908105 |
2020 |
Du, S. |
He, J. |
Functionalization of 8-17 DNAzymes modulates catalytic efficiency and divalent metal ion preference |
31711763 |
10.1016/j.bioorg.2019.103401 |
2020 |
Dellafiore, M. |
Iribarren, A. M. |
Core modified 8–17 DNAzymes with 2′-deoxy-2′-C-methylpyrimidine nucleosides |
33142406 |
10.1016/j.bioorg.2020.104328 |
2020 |
Dai, S. |
Cheng, G. |
The Split Primer Ligation-triggered 8-17 DNAzyme Assisted Cascade Rolling Circle Amplification for High Specific Detection of Liver Cancer-involved mRNAs: TK1 and c-myc |
|
10.1002/elan.201900539 |
2019 |
Memon, A. G. |
He, M. |
Label-free colorimetric nanosensor with improved sensitivity for Pb2 + in water by using a truncated 8–17 DNAzyme |
|
10.1007/s11783-019-1094-7 |
2010 |
Wang, B. |
Xi, Z. |
Probing the Function of Nucleotides in the Catalytic Cores of the 8-17 and 10-23 DNAzymes by Abasic Nucleotide and C3 Spacer Substitutions |
20698496 |
10.1021/bi100304b |
2010 |
Wang, B. |
Xi, Z. |
Replacing Mg2+ by Fe2+ for RNA-cleaving DNAzymes |
31322805 |
10.1002/cbic.201900344 |
2003 |
Breaker, R. R. |
Lazarev, D. |
A common speed limit for RNA-cleaving ribozymes and deoxyribozymes |
12869706 |
10.1261/rna.5670703 |
1998 |
Santoro, S. W. |
Joyce, G. F. |
Mechanism and Utility of an RNA-Cleaving DNA Enzyme |
9748341 |
10.1021/bi9812221 |
2006 |
Asanuma, H. |
Asanuma, H. |
Enhancement of RNA cleavage activity of 10–23 DNAzyme by covalently introduced intercalator |
17146528 |
10.1039/b611078a |
2012 |
Jung, J. |
Kim, S. K. |
Effect of Single-Base Mutation on Activity and Folding of 10-23 Deoxyribozyme Studied by Three-Color Single-Molecule ALEX FRET |
22329599 |
10.1021/jp2117196 |
2020 |
Li, Y. |
He, J. |
A new Pb2+-specifc DNAzyme by revisiting the catalytic core of 10–23 DNAzyme |
33038786 |
10.1016/j.bmc.2020.115796 |
2000 |
Cairns, M. J. |
Sun, L. Q. |
Nucleic acid mutation analysis using catalytic DNA |
637339 |
10.1093/nar/28.3.e9 |
2001 |
Joyce, G. F. |
Joyce, G. F. |
RNA Cleavage by the 10-23 DNA Enzyme |
11582801 |
10.1016/s0076-6879(01)41173-6 |
2006 |
Hayashi, H. |
Asanuma, H. |
Activation of DNA enzyme 10–23 by tethering an intercalator to its backbone |
17150870 |
10.1093/nass/nrl083 |
2012 |
Wang, Q. |
Liu, K. |
Catalytic cleavage activities of 10–23 DNAzyme analogs functionalized with an amino group in its catalytic core |
|
10.1016/j.apsb.2011.11.002 |
2020 |
Hanpanich, O. |
Maruyama, A. |
Cationic copolymer-chaperoned short-armed 10–23 DNAzymes |
31608816 |
10.1080/15257770.2019.1675168 |
2002 |
Dass, C. R. |
Sun, L. Q. |
Cellular Uptake, Distribution, and Stability of 10-23 Deoxyribozymes |
12477279 |
10.1089/108729002761381276 |
2017 |
Fokina, A. A. |
Fokina, A. A. |
Delivery of therapeutic RNA-cleaving oligodeoxyribonucleotides (deoxyribozymes): from cell culture studies to clinical trials |
27892730 |
10.1080/17425247.2017.1266326 |
2007 |
Sheng, Y. |
Zhang, J. |
Design and switch of catalytic activity with the DNAzyme–RNAzyme combination |
17434496 |
10.1016/j.febslet.2007.03.062 |
2019 |
Winczura, K. |
Grzechnik, P. |
DNAzyme-dependent Analysis of rRNA 2’-O-Methylation |
31566620 |
10.3791/59700 |
2000 |
Todd, A. V. |
Todd, A. V. |
DzyNA-PCR: Use of DNAzymes to Detect and Quantify Nucleic Acid Sequences in a Real-Time Fluorescent Format |
10794743 |
10.1093/clinchem/46.5.625 |
2008 |
Nawrot, B. |
Nawrot, B. |
Effect of RP and SPPhosphorothioate Substitution at the Scissile Site on the Cleavage Activity of Deoxyribozyme 10-23 |
|
10.2174/138527208785161204 |
2011 |
Yi, J. |
Yi, J. |
Efficient Silencing of Gene Expression by an ASON– Bulge–DNAzyme Complex |
21490924 |
10.1371/journal.pone.0018629 |
2012 |
Robaldo, L. |
Iribarren, A. M. |
Influence of conformationally restricted pyrimidines on the activity of 10–23 DNAzymes |
22429508 |
10.1016/j.bmc.2012.02.047 |
2019 |
Ven, K. |
Lammertyn, J. |
Re-engineering 10-23 core DNA- and MNAzymes for applications at standard room temperature |
30341659 |
10.1007/s00216-018-1429-4 |
2003 |
Schubert, S. |
Schubert, S. |
RNA cleaving ‘10-23’ DNAzymes with enhanced stability and activity |
14530446 |
10.1093/nar/gkg791 |
2002 |
Fürste, J. P. |
Kurreck, J. |
Sequence Requirements in the Catalytic Core of the “10-23” DNA Enzyme |
12192010 |
10.1074/jbc.M207094200 |
2013 |
Kumar, B. |
Khanna, M. |
Sequence-Specific Cleavage of BM2 Gene Transcript of Influenza B Virus by 10-23 Catalytic Motif Containing DNA Enzymes Significantly Inhibits Viral RNA Translation and Replication |
23971908 |
10.1089/nat.2013.0432 |
2010 |
Smuga, D. |
Nawrot, B. |
RNA-cleaving 10–23 deoxyribozyme with a single amino acid-like functionality operates without metal ion cofactors |
|
10.1039/B9NJ00705A |
2015 |
Wang, F. |
Liu, J. |
Tandem DNAzymes for mRNA cleavage: choice of enzyme, metal ions and the antisense effect |
25769818 |
10.1016/j.bmcl.2015.02.032 |
2012 |
Fokina, A. |
Fokina, A. |
Targeting Insulin-like Growth Factor I with 10−23 DNAzymes: 2′-OMethyl Modifications in the Catalytic Core Enhance mRNA Cleavage |
22352843 |
10.1021/bi201532q |
2004 |
Cairns, M. J |
Cairns, M. J |
Target-Site Selection for the 10–23 DNAzyme |
15017056 |
10.1385/1-59259-746-7:267 |
2010 |
Li, J. |
Li, J. |
The 10–23 DNA Enzyme Generated by a Novel Expression Vector Mediate Inhibition of Taco Expression in Macrophage |
20059315 |
10.1089/oli.2009.0217 |
2012 |
Miao, J. |
Zhang, X. G. |
Inhibition on hepatitis B virus e-gene expression of 10–23 DNAzyme delivered by novel chitosan oligosaccharide–stearic acid micelles |
|
10.1016/j.carbpol.2011.09.022 |
2008 |
Wang, T. H. |
Au, L. C. |
The Use of 10-23 DNAzyme to Selectively Destroy the Allele of mRNA with a Unique Purine-Pyrimidine Dinucleotide |
18699741 |
10.1089/oli.2008.0138 |
2010 |
Richards, J. L. |
Dmochowski, I. J. |
Turning the 10–23 DNAzyme On and Off with Light |
20077457 |
10.1002/cbic.200900702 |
2009 |
Yu, S. H. |
Au, L. C. |
Specific repression of mutant K-RAS by 10–23 DNAzyme: Sensitizing cancer cell to anti-cancer therapies |
19014906 |
10.1016/j.bbrc.2008.11.027 |
2012 |
Ruble, B. K. |
Dmochowski, I. J. |
Mismatch discrimination and efficient photomodulation with split 10–23 DNAzymes |
22544974 |
10.1016/j.ica.2011.10.068 |
2021 |
Rosenbach, H. |
Span, I. |
Influence of monovalent metal ions on metal binding and catalytic activity of the 10–23 DNAzyme |
33544488 |
10.1515/hsz-2020-0207 |
2018 |
Kamiya, Y. |
Asanuma, H. |
Development of Visible-Light-Responsive RNA Scissors Based on a 10–23 DNAzyme |
29682882 |
10.1002/cbic.201800020 |
2007 |
Sheng, Y. |
Miao, J. |
Hepatitis B virus S gene therapy with 10-23 DNAzyme delivered by chitosan-g-stearic acid micelles |
|
10.1039/C9RA00330D |
2005 |
Zaborowska, Z. |
Erdmann, V. A. |
Deletion analysis in the catalytic region of the 10–23 DNA enzyme |
15642375 |
10.1016/j.febslet.2004.12.008 |
2020 |
Du, S. |
He, J. |
Site-specific functionalization with amino, guanidinium, and imidazolyl groups enabling the activation of 10–23 DNAzyme |
|
10.1039/D0RA02226H |
2021 |
Debiais, M. |
Smietana, M. |
Boronic Acid‐Mediated Activity Control of Split 10–23 DNAzymes |
33058268 |
10.1002/chem.202004227 |
2020 |
Du, S. |
He, J. |
2′-Functional group of adenosine in 10–23 DNAzyme promotes catalytic activity |
31932223 |
10.1016/j.bmcl.2020.126961 |
2017 |
Li, P. |
He, J. |
Studies on the Two Thymine Residues in the Catalytic Core of 10-23 DNAzyme: The Impact on the Catalysis of Their 5-Substituted Functional Groups |
28640218 |
10.3390/molecules22071011 |
2016 |
Zhou, W. |
Liu, J. |
In Vitro Selection of Chromium-Dependent DNAzymes for Sensing Chromium(III) and Chromium(VI) |
27249536 |
10.1002/chem.201601426 |
2017 |
Zhou, W. |
Liu, J. |
Two Completely Different Mechanisms for Highly Specific Na+ Recognition by DNAzymes |
28658518 |
10.1002/cbic.201700184 |
2018 |
Jimmy Huang, P. J. |
Liu, J. |
Instantaneous Iodine-Assisted DNAzyme Cleavage of Phosphorothioate RNA. |
30272443 |
10.1021/acs.biochem.8b00900 |
2015 |
Vazin, M. |
Liu, J. |
Biochemical Characterization of a Lanthanide-Dependent DNAzyme with Normal and Phosphorothioate-Modified Substrates. |
26356231 |
10.1021/acs.biochem.5b00691 |
2019 |
Ma, L. |
Liu, J. |
From general base to general acid catalysis in a sodium-specific DNAzyme by a guanine-to-adenine mutation |
31276580 |
10.1093/nar/gkz578 |
2015 |
Torabi, S. F. |
Lu, Y. |
In vitro selection of a sodium-specific DNAzyme and its application in intracellular sensing |
25918425 |
10.1073/pnas.1420361112 |
2016 |
Zhou, W. |
Liu, J. |
A DNAzyme requiring two different metal ions at two distinct sites |
26657636 |
10.1093/nar/gkv1346 |
2015 |
Torabi, S. F. |
Lu, Y. |
Identification of the Same Na(+)-Specific DNAzyme Motif from Two In Vitro Selections Under Different Conditions. |
26577294 |
10.1007/s00239-015-9715-7 |
2000 |
Li, J. |
Lu, Y |
A highly sensitive and selective catalytic DNA biosensor for lead ions |
|
10.1021/ja0021316 |
2015 |
Zhou, W. |
Liu, J. |
DNAzyme hybridization, cleavage, degradation, and sensing in undiluted human blood serum |
25757186 |
10.1021/acs.analchem.5b00220 |
2016 |
Zhou, W. |
Liu, J. |
In vitro selection in serum: RNA-cleaving DNAzymes for measuring Ca2+ and Mg2+ |
|
10.1021/acssensors.5b00306 |
2017 |
Saran, R. |
Liu, J. |
A Silver-Specific DNAzyme with a New Silver Aptamer and Salt-Promoted Activity. |
28345892 |
10.1021/acs.biochem.6b01131 |
2015 |
Huang, P. J. J. |
Liu, J. |
Desulfurization Activated Phosphorothioate DNAzyme for the Detection of Thallium. |
26393365 |
10.1021/acs.analchem.5b02568 |
2012 |
Velez, T. |
Silverman, S. K. |
Systematic Evaluation of the Dependence of Deoxyribozyme Catalysis on Random Region Length |
23088677 |
10.1021/co300111f |
2019 |
Shomali, Z. |
Kompany-Zareh, M. |
Fluorescence Based Investigation of Temperature-Dependent Pb2+-Specific 8–17E DNAzyme Catalytic Sensor |
30778897 |
10.1007/s10895-019-02346-8 |
2021 |
Moon, W. J. |
Liu, J. |
Probing Metal-Dependent Phosphate Binding for the Catalysis of the 17E DNAzyme |
34106684 |
10.1021/acs.biochem.1c00091 |
2008 |
Kim, H. K |
Lu, Y. |
Probing Metal Binding in the 8–17 DNAzyme by TbIII Luminescence Spectroscopy |
18688837 |
10.1002/chem.200701789 |
2016 |
Liu, S. |
Liu, S. |
Ultrasensitive electrochemical DNAzyme sensor for lead ion based on cleavage-induced template-independent polymerization and alkaline phosphatase amplification |
27093488 |
10.1016/j.bios.2016.04.026 |
2018 |
Xu, Q. |
Zhang, C. Y. |
A universal DNAzyme-based bioluminescent sensor for label-free detection of biomolecules |
30392672 |
10.1016/j.aca.2018.08.059 |
2018 |
Gu, L. |
Liu, J. |
Reselection yielding a smaller and more active silver-specific DNAzyme |
31458180 |
10.1021/acsomega.8b02039 |
2008 |
Mui, T. P |
Silverman, S. K |
Convergent and General One-Step
DNA-Catalyzed Synthesis of Multiply
Branched DNA |
18808125 |
10.1021/ol801568q |
2011 |
Lee, C. S |
Silverman, S. K |
Improved deoxyribozymes for synthesis of
covalently branched DNA and RNA |
20739352 |
10.1093/nar/gkq753 |
2005 |
Pratico, E |
Silverman, S. K |
A deoxyribozyme that synthesizes 20,50-branched
RNA with any branch-site nucleotide |
15967808 |
10.1093/nar/gki656 |
2004 |
Coppins, R. L |
Silverman, S. K |
A DNA enzyme that mimics the first step of RNA splicing |
14758353 |
10.1038/nsmb727 |
2005 |
Coppins, R. L |
Silverman, S. K |
A Deoxyribozyme that Forms a Three-Helix-Junction Complex
with its RNA Substrates and has General RNA
Branch-Forming Activity |
15740125 |
10.1021/ja044881b |
2005 |
Wang, Y |
Silverman, S. K |
Directing the Outcome of Deoxyribozyme Selections To Favor Native 3 ′-5′ RNA
Ligation |
15723545 |
10.1021/bi0478291 |
2006 |
Zelin, E |
Silverman, S. K |
Adenosine Is Inherently Favored as the Branch-Site RNA Nucleotide in a Structural
Context That Resembles Natural RNA Splicing |
16503631 |
10.1021/bi052499l |
2008 |
Kost, D |
Silverman, S. K |
Controlling the direction of site-selectivity and regioselectivity in RNA ligation by
Zn2+-dependent deoxyribozymes that use 2′,3′-cyclic phosphate RNA substrates |
19005599 |
10.1039/b813566e |
2003 |
Wang, Y |
Silverman, S. K |
Deoxyribozymes That Synthesize Branched and Lariat RNA |
12783536 |
10.1021/ja035150z |
2003 |
Wang, Y |
Silverman, S. K |
Characterization of Deoxyribozymes That Synthesize Branched RNA |
14690435 |
10.1021/bi0355847 |
2003 |
Flynn-Charlebois, A |
Silverman, S. K |
Deoxyribozymes with 2′-5′ RNA Ligase Activity |
12603132 |
10.1021/ja028774y |
2005 |
Purtha, W |
Silverman, S. K |
General Deoxyribozyme-Catalyzed Synthesis of Native 3′-5′ RNA Linkages |
16173722 |
10.1021/ja0533702 |
2003 |
Flynn-Charlebois, A |
Silverman, S. K |
In vitro evolution of an RNA-cleaving DNA enzyme into an RNA ligase switches the selectivity from 3'-5' to 2'-5'. |
12720447 |
10.1021/ja0340331 |
2003 |
Ricca, B. L |
Silverman, S. K |
Optimization and Generality of a Small Deoxyribozyme
that Ligates RNA |
12860124 |
10.1016/s0022-2836(03)00654-5 |
2020 |
Scheitl, C. P |
Höbartner, C |
New Deoxyribozymes for the Native Ligation of RNA. |
32796587 |
10.3390/molecules25163650 |
2004 |
Coppins, R. L |
Silverman, S. K |
Rational modification of a selection strategy leads to deoxyribozymes that create native 3'-5' RNA linkages. |
15600344 |
10.1021/ja045817x |
2004 |
Prior, T. K |
Silverman, S. K |
Structure–function correlations derived from faster
variants of a RNA ligase deoxyribozyme |
14960718 |
10.1093/nar/gkh263 |
2005 |
Hoadley, K. A |
Silverman, S. K |
Zn2+-dependent deoxyribozymes that form natural and unnatural RNA linkages. |
15966746 |
10.1021/bi050146g |
2013 |
Samanta, B |
Höbartner, C |
Combinatorial Nucleoside-Deletion-Scanning Mutagenesis of
Functional DNA |
23371361 |
10.1002/anie.201208103 |
2013 |
Samanta, B |
Höbartner, C |
Mutationsanalyse funktionaler DNA durch statistische
Nucleosiddeletion |
|
10.1002/ange.201208103 |
2016 |
Javadi‐Zarnaghi, F |
Höbartner, C |
Functional Hallmarks of a Catalytic DNA that Makes Lariat RNA |
26525606 |
10.1002/chem.201503238 |
2010 |
Wachowius, F |
Höbartner, C |
Combinatorial Mutation Interference Analysis Reveals Functional
Nucleotides Required for DNA Catalysis |
20872387 |
10.1002/anie.201003940 |
2015 |
Turriani, E |
Höbartner, C |
Mg2+-dependent conformational changes and product
release during DNA-catalyzed RNA ligation monitored
by Bimane fluorescence |
25505142 |
10.1093/nar/gku1268 |
2005 |
Coppins, R. L |
Silverman, S. K |
Mimicking the First Step of RNA Splicing: An Artificial DNA Enzyme Can
Synthesize Branched RNA Using an Oligonucleotide Leaving Group as a
5′-Exon Analogu |
16216067 |
10.1021/bi0507229 |
2011 |
Wachowius, F |
Höbartner, C |
Probing Essential Nucleobase Functional Groups in Aptamers and
Deoxyribozymes by Nucleotide Analogue Interference Mapping of
DNA |
21863810 |
10.1021/ja205894w |
2006 |
Wang, Y |
Silverman, S. K |
Experimental Tests of Two Proofreading
Mechanisms for 5=-Splice Site Selection |
17163761 |
10.1021/cb6001569 |
2017 |
arrocci, T. J |
Höbartner, C |
Debranchase-resistant labeling of RNA using the 10DM24
deoxyribozyme and fluorescent modified nucleotides |
28984884 |
10.1039/c7cc06703h |
2013 |
Behera, A. K |
Baum, D. A |
Enhanced Deoxyribozyme-Catalyzed RNA Ligation in the Presence of
Organic Cosolvents |
23529690 |
10.1002/bip.22191 |
2007 |
Höbartner, C |
Silverman, S. K |
Engineering a Selective Small-Molecule Substrate Binding Site into a
Deoxyribozyme |
17694519 |
10.1002/anie.200702217 |
2011 |
Alila, K. O |
Baum, D. A |
Modulation of an RNA-branching deoxyribozyme by a small molecule |
21258742 |
10.1039/c0cc04971a |
2020 |
Dehghanian, F |
Hojati, Z |
DMLR: A toolkit for investigation of deoxyribozyme-mediated ligation
based on real time PCR |
32007270 |
10.1016/j.bbrc.2020.01.075 |
2013 |
Javadi-Zarnaghi, F |
Höbartner, C |
Lanthanide Cofactors Accelerate DNA-Catalyzed Synthesis of
Branched RNA |
23895365 |
10.1021/ja406162z |
2016 |
Ponce-Salvatierra, A |
Höbartner, C |
Crystal structure of a DNA catalyst. |
26735012 |
10.1038/nature16471 |
2014 |
Wawrzyniak-Turek, K |
Höbartner, C |
Deoxyribozyme-Mediated Ligation
for Incorporating EPR Spin Labels
and Reporter Groups into RNA |
25432745 |
10.1016/B978-0-12-801122-5.00004-0 |
2019 |
Aranda, J |
Orozco, M |
An artificial DNAzyme RNA ligase shows a
reaction mechanism resembling that of
cellular polymerases |
|
10.1038/s41929-019-0290-y |
2019 |
Mattioli, E |
Calvaresi, M |
DNAzymes at Work: A DFT Computational
Investigation on the Mechanism of 9DB1 |
30702292 |
10.1021/acs.jcim.8b00815 |
2005 |
Semlow, D. R |
Silverman, S. K |
Parallel selections in vitro reveal a preference for 2'-5' RNA ligation upon deoxyribozyme-mediated opening of a 2',3'-cyclic phosphate. |
16007488 |
10.1007/s00239-004-0326-y |
2014 |
Büttner, L |
Höbartner, C |
Site-specific labeling of RNA at internal ribose hydroxyl groups: terbium-assisted deoxyribozymes at work |
24825547 |
10.1021/ja503864v |
2007 |
Baum, D. A |
Silverman, S. K |
Deoxyribozyme-Catalyzed Labeling of RNA |
17394278 |
10.1002/anie.200700357 |