Modomics - A Database of RNA Modifications

Published on Feb. 1, 2012 in J Bacteriol volume 194.

PubMed ID: 22081392


Abstract:

The folate-dependent protein YgfZ of Escherichia coli participates in the synthesis and repair of iron-sulfur (Fe-S) clusters; it belongs to a family of enzymes that use folate to capture formaldehyde units. Ablation of ygfZ is known to reduce growth, to increase sensitivity to oxidative stress, and to lower the activities of MiaB and other Fe-S enzymes. It has been reported that the growth phenotype can be suppressed by disrupting the tRNA modification gene mnmE. We first confirmed the latter observation using deletions in a simpler, more defined genetic background. We then showed that deleting mnmE substantially restores MiaB activity in ygfZ deletant cells and that overexpressing MnmE with its partner MnmG exacerbates the growth and MiaB activity phenotypes of the ygfZ deletant. MnmE, with MnmG, normally mediates a folate-dependent transfer of a formaldehyde unit to tRNA, and the MnmEG-mediated effects on the phenotypes of the DeltaygfZ mutant apparently require folate, as evidenced by the effect of eliminating all folates by deleting folE. The expression of YgfZ was unaffected by deleting mnmE or overexpressing MnmEG or by folate status. Since formaldehyde transfer is a potential link between MnmEG and YgfZ, we inactivated formaldehyde detoxification by deleting frmA. This deletion had little effect on growth or MiaB activity in the DeltaygfZ strain in the presence of formaldehyde, making it unlikely that formaldehyde alone connects the actions of MnmEG and YgfZ. A more plausible explanation is that MnmEG erroneously transfers a folate-bound formaldehyde unit to MiaB and that YgfZ reverses this.


This publication refers to following proteins: