Published on Aug. 15, 2025 in J Mol Biol volume 437 (16).
PubMed ID: 40055058
DOI: 10.1016/j.jmb.2025.169020
Abstract:
Building on decades of work in characterizing the dozens of RNA modifications in the microbial epitranscriptome, recent advances in analytical technology and genetics have revealed systems-level functions for many tRNA modifications. The tRNA (uracil-5-)-methyltransferase TrmA and its product, 5-methyl uridine (m<sup>5</sup>U) at position 54 in the T-loop, however, has not been linked to a specific phenotype. Here, we defined the functional and biological roles of TrmA in Pseudomonas aeruginosa (PA14), a major multidrug-resistant pathogen. Surprisingly, though TrmA was found to site-specifically catalyze m<sup>5</sup>U54 on all PA14 tRNAs, loss of TrmA had no effect on the levels of any of 36 tRNA modifications except m<sup>5</sup>U and had minimal effects on multiple phenotypic parameters, including growth rate, morphology, motility, and biofilm formation. However, loss of TrmA conferred a striking polymyxin antibiotic resistance. mRNA and tRNA profiling and proteomics analyses revealed that TrmA regulates the expression of codon-biased gene families at the level of translation, including components of a type III secretion system (T3SS). Loss of TrmA upregulated T3SS, leading to increased macrophage IL-1β in bacterial challenge tests. Altogether, these results revealed novel biological functions of TrmA and its roles in modulating gene expression at multiple levels in P. aeruginosa.