Modomics - A Database of RNA Modifications

Published on June 9, 2006 in J Mol Biol volume 359.

PubMed ID: 16678201


Abstract:

The rRNAs in Escherichia coli contain methylations at 24 nucleotides, which collectively are important for ribosome function. Three of these methylations are m5C modifications located at nucleotides C967 and C1407 in 16S rRNA and at nucleotide C1962 in 23S rRNA. Bacterial rRNA modifications generally require specific enzymes, and only one m5C rRNA methyltransferase, RsmB (formerly Fmu) that methylates nucleotide C967, has previously been identified. BLAST searches of the E.coli genome revealed a single gene, yebU, with sufficient similarity to rsmB to encode a putative m5C RNA methyltransferase. This suggested that the yebU gene product modifies C1407 and/or C1962. Here, we analysed the E.coli rRNAs by matrix assisted laser desorption/ionization mass spectrometry and show that inactivation of the yebU gene leads to loss of methylation at C1407 in 16 S rRNA, but does not interfere with methylation at C1962 in 23 S rRNA. Purified recombinant YebU protein retains its specificity for C1407 in vitro, and methylates 30 S subunits (but not naked 16 S rRNA or 70 S ribosomes) isolated from yebU knockout strains. Nucleotide C1407 is located at a functionally active region of the 30 S subunit interface close to the P site, and YebU-directed methylation of this nucleotide seems to be conserved in bacteria. The yebU knockout strains display slower growth and reduced fitness in competition with wild-type cells. We suggest that a more appropriate designation for yebU would be the rRNA small subunit methyltransferase gene rsmF, and that the nomenclature system be extended to include the rRNA methyltransferases that still await identification.


This publication refers to following proteins: