Self-assembled peptides exposing epitopes recognizable by human lymphoma cells
Overview of Tang A et al.
Authors | Tang A  Wang C  Stewart R  Kopecek J   |
---|---|
Affiliation | Departments of Pharmaceutics and Pharmaceutical Chemistry/CCCD and of Bioengineering   University of Utah   Salt Lake City   Utah 84112   USA.   |
Journal | Bioconjug Chem |
Year | 2000 |
Abstract
A bifunctional N-(2-hydroxypropyl)methacrylamide (HPMA) copolymer containing nitrilotriacetic acid (NTA) and benzophenone (BP) groups was synthesized by free-radical copolymerization of HPMA, 2-methacrylamidobutyl nitrilotriacetic acid (MABNTA), and 4-methacrylamido benzophenone (MABP) using 2, 2'-azobisisobutyronitrile (AIBN) as initiator. A His-tagged coiled coil stem loop peptide containing a tridecapeptide (TDP) epitope (GFLGEDPGFFNVE) in the loop region (CCSL-TDP) was designed and synthesized genetically by expressing an artificial gene in Escherichia coli BL21 (DE3). The peptide was characterized by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), size-exclusion chromatography (SEC), and circular dichroism (CD) spectroscopy. Surfaces containing self-assembled CCSL-TDP peptide were prepared by first covalently grafting poly(HPMA-co-MABNTA-co-MABP) onto polystyrene (PS) surface by UV irradiation, then charging the surface with nickel through NTA groups, and finally attaching the CCSL-TDP peptide through Ni-histidine chelation. The modified PS surfaces with and without self-assembled CCSL-TDP peptide were characterized by X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (TOF-SIMS). Cell attachment studies with human Burkitt's lymphoma Raji B cells showed that the cells selectively bound to the self-assembled CCSL-TDP peptide surfaces, but not to the surfaces of PS, PS with grafted copolymer, and PS with grafted copolymer and self-assembled coiled coil peptide with similar structure but without the epitope. This indicates that the cell attachment was mediated by the CCSL-TDP peptide, most probably by the TDP epitope region. The CCSL peptide self-assembly presented here may represent a feasible model of exposing epitopes for biorecognition studies.