NACDDB - The Web Server for DNA,RNA,and Hybrids Circular Dichroism Structure

Biophysical characterization and ligand-binding properties of the elongation factor Tu from Mycobacterium tuberculosis

Overview of Yang J et al.

AuthorsYang J  Hong J  Luo L  Liu K  Meng C  Ji ZL  Lin D  
AffiliationHigh-Field NMR Center   Key Laboratory for Chemical Biology of Fujian Province   College of Chemistry and Chemical Engineering   Xiamen University   Xiamen   China.  
JournalActa Biochim Biophys Sin (Shanghai)
Year 2019

Abstract


Mycobacterium tuberculosis (Mtb) is the key devastating bacterial pathogen responsible for tuberculosis. Increasing emergence of multi-drug-resistant, extensively drug-resistant, and rifampicin/isoniazid-resistant strains of Mtb makes the discovery of validated drug targets an urgent priority. As a vital translational component of the protein biosynthesis system, elongation factor Tu (EF-Tu) is an important molecular switch responsible for selection and binding of the cognate aminoacyl-tRNA to the acceptor site on the ribosome. In addition, EF-Tu from Mtb (MtbEF-Tu) is involved in the initial step of trans-translation which is an effective system for rescuing the stalled ribosomes from non-stop translation complexes under stress conditions. Given its crucial role in protein biosynthesis, EF-Tu is identified as an excellent molecular target for drug design. Here, we reported the recombinant expression, purification, biophysical characterization, and structural modeling of the MtbEF-Tu protein. Our results demonstrated that prokaryotic expression plasmids of pET28a-MtbEF-Tu could be expressed efficiently in Escherichia coli. We successfully purified the 6× His-tagged proteins with a yield of 16.8 mg from 1 l of Luria Bertani medium. Dynamic light scattering experiments showed that MtbEF-Tu existed in a monomeric form, and circular dichroism experiments indicated that MtbEF-Tu was well structured. Moreover, isothermal titration calorimetry experiments displayed that the purified MtbEF-Tu protein possessed intermediate binding affinities for guanosine-5'-triphosphate (GTP) and GDP. The GTP/GDP-binding sites were predicted by flexible molecular docking approach which reveals that GTP/GDP binds to MtbEF-Tu mainly through hydrogen bonds. Our work lays the essential basis for further structural and functional studies of MtbEF-Tu as well as MtbEF-Tu-related novel drug developments.