O4-alkyl-2'-deoxythymidine cross-linked DNA to probe recognition and repair by O6-alkylguanine DNA alkyltransferases
Overview of McManus FP et al.
Authors | McManus FP  O'Flaherty DK  Noronha AM  Wilds CJ   |
---|---|
Affiliation | Department of Chemistry and Biochemistry   Concordia University   Montreal   Canada.   |
Journal | Org Biomol Chem |
Year | 2012 |
Abstract
DNA duplexes containing a directly opposed O(4)-2'-deoxythymidine-alkyl-O(4)-2'-deoxythymidine (O(4)-dT-alkyl-O(4)-dT) interstrand cross-link (ICL) have been prepared by the synthesis of cross-linked nucleoside dimers which were converted to phosphoramidites to produce site specific ICL. ICL duplexes containing alkyl chains of four and seven methylene groups were prepared and characterized by mass spectrometry and nuclease digests. Thermal denaturation experiments revealed four and seven methylene containing ICL increased the T(m) of the duplex with respect to the non-cross-linked control with an observed decrease in enthalpy based on thermodynamic analysis of the denaturation curves. Circular dichroism experiments on the ICL duplexes indicated minimal difference from B-form DNA structure. These ICL were used for DNA repair studies with O(6)-alkylguanine DNA alkyltransferase (AGT) proteins from human (hAGT) and E. coli (Ada-C and OGT), whose purpose is to remove O(6)-alkylguanine and in some cases O(4)-alkylthymine lesions. It has been previously shown that hAGT can repair O(6)-2'-deoxyguanosine-alkyl-O(6)-2'-deoxyguanosine ICL. The O(4)-dT-alkyl-O(4)-dT ICL prepared in this study were found to evade repair by hAGT, OGT and Ada-C. Electromobility shift assay (EMSA) results indicated that the absence of any repair by hAGT was not a result of binding. OGT was the only AGT to show activity in the repair of oligonucleotides containing the mono-adducts O(4)-butyl-4-ol-2'-deoxythymidine and O(4)-heptyl-7-ol-2'-deoxythymidine. Binding experiments conducted with hAGT demonstrated that the protein bound O(4)-alkylthymine lesions with similar affinities to O(6)-methylguanine, which hAGT repairs efficiently, suggesting the lack of O(4)-alkylthymine repair by hAGT is not a function of recognition.