NACDDB - The Web Server for DNA,RNA,and Hybrids Circular Dichroism Structure

Characterization of In Vitro G-Quadruplex Formation of Imetelstat Telomerase Inhibitor

Overview of Carloni LE et al.

AuthorsCarloni LE  Wechselberger R  De Vijlder T  
AffiliationSmall Molecule Pharmaceutical Development   Janssen Research & Development   Beerse   Belgium.  
JournalNucleic Acid Ther
Year 2021

Abstract


Imetelstat (GRN163L) is a potent and specific telomerase inhibitor currently in clinical development for the treatment of hematological malignancies such as myelofibrosis and myelodysplastic syndrome. It is a 13-mer N3'-P5' thio-phosphoramidate oligonucleotide covalently functionalized at the 5'-end with a palmitoyl lipid moiety through an aminoglycerol linker. As a competitive inhibitor of human telomerase, imetelstat directly binds to the telomerase RNA component sequence (hTR) in the catalytic site of the enzyme and acts as a direct competitor of human telomere binding. Administration of imetelstat causes progressive shortening of the telomeres, thereby inhibiting malignant cells' proliferation. We report here the ability of imetelstat to form stable, parallel, intermolecular G-quadruplex structures in vitro. The impact of the ionic environment on the formation and stability of imetelstat higher-order structure was investigated through circular dichroism spectroscopy, thermal denaturation analysis, and size-exclusion chromatography. We demonstrated that different structural elements, such as the 5'-palmitoyl linker and the thio-phosphoramidate backbone, critically contribute to G-quadruplex stability. Experiments further showed that G-quadruplex formation does not hamper binding to the hTR oligonucleotide sequence in vitro.