Stability and flexibility of full-length human oligodendrocytic QKI6
Overview of Raasakka A et al.
Authors | Raasakka A  Kursula P   |
---|---|
Affiliation | Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu   University of Oulu   Oulu   Finland. petri.kursula@uib.no.   |
Journal | BMC Res Notes |
Year | 2019 |
Abstract
OBJECTIVE: Oligodendrocytes account for myelination in the central nervous system. During myelin compaction, key proteins are translated in the vicinity of the myelin membrane, requiring targeted mRNA transport. Quaking isoform 6 (QKI6) is a STAR domain-containing RNA transport protein, which binds a conserved motif in the 3'-UTR of certain mRNAs, affecting the translation of myelination-involved proteins. RNA binding has been earlier structurally characterized, but information about full-length QKI6 conformation is lacking. Based on known domains and structure predicitons, we expected full-length QKI6 to be flexible and carry disordered regions. Hence, we carried out biophysical and structural characterization of human QKI6. RESULTS: We expressed and purified full-length QKI6 and characterized it using mass spectrometry, light scattering, small-angle X-ray scattering, and circular dichroism spectroscopy. QKI6 was monodisperse, folded, and mostly dimeric, being oxidation-sensitive. The C-terminal tail was intrinsically disordered, as predicted. In the absence of RNA, the RNA-binding subdomain is likely to present major flexibility. In thermal stability assays, a double sequential unfolding behaviour was observed in the presence of phosphate, which may interact with the RNA-binding domain. The results confirm the flexibility and partial disorder of QKI6, which may be functionally relevant.