NACDDB - The Web Server for DNA,RNA,and Hybrids Circular Dichroism Structure

Nucleic acid binding properties of recombinant Zn2 HIV-1 nucleocapsid protein are modulated by COOH-terminal processing

Overview of Khan R et al.

AuthorsKhan R  Giedroc DP  
AffiliationDepartment of Biochemistry and Biophysics   Texas A&M University   College Station 77843-2128.  
JournalJ Biol Chem
Year 1994

Abstract


The nucleocapsid protein (NC) of all animal retroviruses is the major structural protein of the core ribonucleoprotein complex, bound to genomic RNA in mature virions. In a previous report, we showed that recombinant NC protein from HIV-1, a 71-amino-acid protein (NC71), is apparently able to form two types of protein-nucleic acid complexes under low [NaCl], pH 8.3 and 25 degrees C. These appeared to differ in occluded apparent site size, napp, forming n = 8 and n = 14 complexes on poly(A) (Dib-Hajj, F., Khan, R., and Giedroc, D. P. (1993) Protein Sci. 2, 331-243) under conditions of high and low protein-nucleotide ratios, respectively. Here we show that both NC71-poly(A) complexes strongly scatter light under these solution conditions. Examination of the wavelength dependence of the light scattering at lambda < or = 320 nm indicates that each complex is characterized by a different scattering coefficient. Optical density measurements suggest that upon formation of the saturated n = 8 complex, additional polynucleotide is not incorporated into the complex over a period of hours, i.e. the n = 14 complex is not formed via redistribution of the n = 8 complex under low salt conditions, 25 degrees C. In contrast, the n = 14 complex readily incorporates additional protein until that sufficient to form the n = 8 complex is present. The n = 14 complex efficiently precipitates poly(A) and shows spectral characteristics expected for an extensively charge-neutralized nucleic acid complex. At [NC71] in excess of that required to form the n = 8 complex, this n = 14 complex is best described as a kinetic intermediate on the pathway to the n = 8 complex, which forms over a period of hours under low salt conditions, 25 degrees C. This slow kinetics of binding provides a possible explanation for the finding that the previously observed moderate cooperativity of Zn2 NC71 binding to poly(A) (omega = 200) at pH 8.3 and 0.29 M NaCl (Khan, R., and Giedroc, D. P. (1992) J. Biol. Chem. 267, 6689-6695) is shown here to represent a nonequilibrium phenomenon, apparently converting to a low or no cooperativity complex over a period of hours. Proteolytic removal of the COOH-terminal 14 amino acids from NC71, forming a 57-amino-acid protein (denoted NC57), removes this apparent binding site size heterogeneity of NC71 on poly(A). At 20 mM NaCl, NC57 binds with n = 6-7 nucleotides, in a manner which is independent of the protein-poly(A) nucleotide ratio. The implications of these findings on processing of the gag precursor which leads to mature NC in HIV-1 virions is discussed.