NACDDB - The Web Server for DNA,RNA,and Hybrids Circular Dichroism Structure

An endo-(1-->3)-beta-D-glucanase from the scallop Chlamys albidus: catalytic properties, cDNA cloning and secondary-structure characterization

Overview of Kovalchuk SN et al.

AuthorsKovalchuk SN  Bakunina IY  Burtseva YV  Emelyanenko VI  Kim NY  Guzev KV  Kozhemyako VB  Rasskazov VA  Zvyagintseva TN  
AffiliationPacific Institute of Bioorganic Chemistry   Far East Branch of the Russian Academy of Sciences   Vladivostok   Russia. kovalchuk@piboc.dvo.ru  
JournalCarbohydr Res
Year 2008

Abstract


An endo-(1-->3)-beta-d-glucanase (L(0)) with molecular mass of 37 kDa was purified to homogeneity from the crystalline style of the scallop Chlamys albidus. The endo-(1-->3)-beta-d-glucanase was extremely thermolabile with a half-life of 10 min at 37 degrees C. L(0) hydrolyzed laminaran with K(m) approximately 0.75 mg/mL, and catalyzed effectively transglycosylation reactions with laminaran as donor and p-nitrophenyl betad-glucoside as acceptor (K(m) approximately 2mg/mL for laminaran) and laminaran as donor and as acceptor (K(m) approximately 5mg/mL) yielding p-nitrophenyl betad-glucooligosaccharides (n=2-6) and high-molecular branching (1-->3),(1-->6)-beta-d-glucans, respectively. Efficiency of hydrolysis and transglycosylation processes depended on the substrate structure and decreased appreciably with the increase of the percentage of beta-(1-->6)-glycosidic bonds, and laminaran with 10% of beta-(1-->6)-glycosidic bonds was the optimal substrate for both reactions. The CD spectrum of L(0) was characteristic for a protein with prevailing beta secondary-structural elements. Binding L(0) with d-glucose as the best acceptor for transglycosylation was investigated by the methods of intrinsic tryptophan fluorescence and CD. Glucose in concentration sufficient to saturate the enzyme binding sites resulted in a red shift in the maximum of fluorescence emission of 1-1.5 nm and quenching the Trp fluorescence up to 50%. An apparent association constant of L(0) with glucose (K(a)=7.4 x 10(5)+/-1.1 x 10(5)M(-1)) and stoichiometry (n=13.3+/-0.7) was calculated. The cDNA encoding L(0) was sequenced, and the enzyme was classified in glycoside hydrolases family 16 on the basis of the amino acid sequence similarity.