Fourier transform infrared spectroscopy for the characterization of a model peptide-DNA interaction
Overview of Dev SB et al.
Authors | Dev SB  Walters L   |
---|---|
Affiliation | Department of Applied Biological Sciences   Massachusetts Institute of Technology   Cambridge 02139.   |
Journal | Biopolymers |
Year | 1990 |
Abstract
To better understand the structural basis of protein-DNA interactions, the conformational changes that accompany these interactions need to be described. In order to develop a methodological approach to this problem, Fourier transform infrared spectroscopy (FTIR) with derivative resolution enhancement has been used to identify conformational changes that occur when a 29-residue synthetic peptide binds nonspecifically to heterogeneous cellular DNA in aqueous solution. The peptide sequence was chosen de novo, in order to rationally design a peptide model that would allow the relationship between DNA binding and the stability of protein secondary structure to be studied. Peptide at a concentration of 100-200 microM produces 50% saturation of heterogeneous phage DNA sequences as well as of short synthetic oligonucleotides. FTIR spectra reveal significant changes in peptide and DNA upon binding. Second-derivative spectra resolve the amide I band of native peptide into components located at 1627 (beta-strand), 1658 (alpha-helix), and 1681 (turn or beta-strand) cm-1, with a distinct shoulder at 1647 cm-1 (disordered structure). Assignment of the 1681 cm-1 vibration to a turn conformation is supported by uv CD studies, which indicate significant amounts of turn structure in unbound peptide. Ultraviolet CD also confirms the existence of disordered and beta-strand regions in the free peptide. Upon interacting with DNA the band at 1681 cm-1 (turn) is no longer seen; a new band appears at 1675 cm-1; the 1627 cm-1 band (beta-strand) is considerably reduced in intensity; the position of the alpha-helical (1658 cm-1) component remains unchanged; the shoulder at 1647 cm-1 (disorder) disappears. The new vibration at 1675 cm-1 is characteristic of beta-strand structures. The asymmetric stretch (vAS) of the DNA phosphates shifts from 1223 (unbound) to 1229 cm-1 (bound); the relative intensities of vAS and the PO2- symmetric stretch (vS) are altered upon peptide binding.(ABSTRACT TRUNCATED AT 400 WORDS)