NACDDB - The Web Server for DNA,RNA,and Hybrids Circular Dichroism Structure

Thermodynamics of an intramolecular DNA triple helix: a calorimetric and spectroscopic study of the pH and salt dependence of thermally induced structural transitions

Overview of Plum GE et al.

AuthorsPlum GE  Breslauer KJ  
AffiliationDepartment of Chemistry   Rutgers State University of New Jersey   New Brunswick 08903   USA.  
JournalJ Mol Biol
Year 1995

Abstract


We have characterized thermodynamically the melting transitions of a DNA 31-mer oligonucleotide (5'-GAAGAGGTTTTTCCTCTTCTTTTTCTTCTCC-3') which is designed to fold into an intramolecular triple helix. The first 19 residues fold back on themselves to form an antiparallel Watson-Crick hairpin duplex with a T5 loop. The 3'-terminal seven residues, which are connected to the Watson-Crick hairpin duplex by a second T5 loop, form Hoogsteen interactions in the major groove of the Watson-Crick hairpin. From ultraviolet (UV) melting studies we find that the 31-mer exhibits either one or two transitions, depending on solution conditions. We use pH- and temperature-dependent circular dichroism (CD) to assign the initial and final states associated with each transition. We find that the disruption of the Hoogsteen hairpin is accompanied by a release of protons and an uptake of sodium ions while the disruption of the Watson-Crick hairpin is accompanied by a release of sodium ions with no change in protonation state. From these data, we construct a phase diagram for this intramolecular DNA triple helix as a function of pH, sodium ion concentration, and temperature. We characterize the energetics of each transition using a van't Hoff analysis and differential scanning calorimetry (DSC). Significantly, the DSC data provide a model-independent thermodynamic characterization of the thermally induced transitions of this triplex. By combining the spectroscopic and calorimetric data, we develop a semi-empirical model which describes the state of the 31-mer as a function of pH, sodium ion concentration, and temperature. With this model we successfully predict characteristics of the 31-mer, which are beyond the data which are used in establishing the model (for example, the salt dependence of the apparent pKa of the Hoogsteen strand). This semi-empirical model may serve as a prototype for developing a method to predict the phase diagrams of intramolecular triple helix systems.