NACDDB - The Web Server for DNA,RNA,and Hybrids Circular Dichroism Structure

Template synthesis of novel carboxamide dinuclear copper (II) complex: spectral characterization and reactivity towards calf-thymus DNA

Overview of Mathur S et al.

AuthorsMathur S  Tabassum S  
AffiliationDepartment of Chemistry   Aligarh Muslim University   Aligarh   UP 202002   India.  
JournalBiometals
Year 2007

Abstract


Dinuclear complexes Bis [aqua 1,8-(1,2-dicarboxamido benzene) 3,6-diazaoctane copper (II)/nickel (II)] tetrachloride (1 and 2) were synthesized by a two component one-pot metal template condensation between phthalic anhydride and 1,8-diamino 3,6-diazaoctane. Elemental analysis, molar conductance measurements, electronic absorption, infra-red, electron paramagnetic resonance, nuclear magnetic resonance, atomic absorption, and electron spray mass spectral studies have been performed to probe the nature and structure of the complexes. The interaction of copper (II) complex with calf thymus (CT-DNA) has been studied by using absorption, emission and circular dichoric spectral methods, viscometry, and cyclic voltammetry. A strong hyperchromism along with a red shift in UV bands and hypochromism in the ligand field band of the complex 1 on interaction with CT-DNA imply a covalent mode of DNA binding. This is further confirmed by studying the reactivity of complex 1 using circular dichroism and viscosity measurements. The variation in relative emission intensity of DNA-bound ethidium bromide observed upon treatment with the complex 1 parallel the trend of DNA binding studies. Cyclic voltammetry studies reveal that the complex 1 prefers to bind to DNA in Cu(II) rather than Cu(I) oxidation state.