NACDDB - The Web Server for DNA,RNA,and Hybrids Circular Dichroism Structure

Effect of divalent cations and cytosine protonation on thermodynamic properties of intermolecular DNA double and triple helices

Overview of Wu P et al.

AuthorsWu P  Kawamoto Y  Hara H  Sugimoto N  
AffiliationHigh Technology Research Center   Konan University   8-9-1 Okamoto   Higashinada-ku   Kobe 658-8501   Japan.  
JournalJ Inorg Biochem
Year 2002

Abstract


The contribution of divalent cations and cytosine protonation to conformation and stability of duplex and triplex formation were intensively investigated and characterized by ultraviolet (UV), circular dichroism (CD), differential scanning calorimetry (DSC), and electrophoresis mobility shift assay (EMSA). CD spectra showed that the divalent cations investigated would not significantly distort nucleotide geometry, while UV and DSC melting experiments revealed that the cation binding abilities to duplexes and triplexes were clearly dependent on the types of cations under near physiological conditions. The calorimetric enthalpies were generally underestimated relative to the corresponding van't Hoff enthalpies for Hoogsteen and Watson-Crick transitions, but free energy changes derived from the DSC measurements were in good agreement with those derived from the UV measurements. The adjacent placing of the C(+) x G.C triplets in triplexes lowered the stabilities of not only Hoogsteen base-pairing but also Watson-Crick base-pairing. The protonation contribution of the given cytosine residues might depend on the local and global structure of the protonated cytosine complex. A rigid structural targeted-strand would favor the protonation of cytosine residues. The apparent pK(a) values for parallel duplex and triplex investigated were determined to be 6.4 and 7.6, respectively, which are considerably heightened by 2.1 and 3.3 pH unit as compared to the intrinsic pK(a) value of the free cytosine residues.