DNA binding and cleavage properties of certain tetrammine ruthenium(II) complexes of modified 1,10-phenanthrolines--effect of hydrogen-bonding on DNA-binding affinity
Overview of Uma Maheswari P et al.
Authors | Uma Maheswari P  Palaniandavar M   |
---|---|
Affiliation | Department of Chemistry   Bharathidasan University   Tiruchirappalli 620 024   Tamilnadu   India.   |
Journal | J Inorg Biochem |
Year | 2004 |
Abstract
A series of ruthenium(II) mixed ligand complexes of the type [Ru(NH(3))(4)(L)](2+), where L=imidazo[4,5-f][1,10]phenanthroline (ip), 2-phenylimidazo[4,5-f][1,10]phenanthroline (pip), 2-(2-hydroxyphenyl)imidazo[4,5-f][1,10]phenanthroline (hpip), 4,7-diphenyl-1,10-phenanthroline (dip), naphtha[2,3-a]dipyrido[3,2-h:2',3'-f]phenazine-5,18-dione (qdppz), 5,18-dihydroxynaphtho[2,3-a]dipyrido[3,2-H:2',3'-f]phenazine (hqdppz), have been isolated and characterized. The interaction of these complexes with calf thymus DNA (CT DNA) has been explored by using absorption, emission, and circular dichroic spectral methods, thermal denaturation studies and viscometry. All these studies suggest the involvement of the modified phenanthroline 'face' rather than the ammonia 'face' of the complexes in DNA binding. An intercalative mode of DNA binding, which involves the insertion of the modified phenanthroline ligands in between the base pairs, is suggested. The results from absorption spectral titration and circular dichroism (CD), thermal denaturation and viscosity experiments indicate that the qdppz and hqdppz complexes (K(b) approximately 10(6) and Delta T(m)=11-13 degrees C) bind more avidly than the ip, pip and hpip complexes (K(b) approximately 10(5), Delta T(m)=6-8 degrees C). Intramolecular hydrogen bonding in the hpip and hqdppz complexes increases the surface area of the intercalating diimines and enhances the DNA binding affinity substantially. The ammonia co-ligands of the complexes are possibly involved in hydrogen bonding with the intrastrand nucleobases to favour intercalation of the extended aromatic ligands. Circular dichroism spectral studies reveal that all the complexes effect certain structural changes on DNA duplex; [Ru(NH(3))(4)(ip)](2+) induces a B to A transition while [Ru(NH(3))(4)(qdppz)](2+) a B to Psi conformational change on CT DNA. Cleavage efficiency of the complexes were determined using pBR322 supercoiled plasmid DNA. All the complexes, except hqdppz complex, promote the cleavage of supercoiled plasmid (form I) to relaxed circular form (form II).