NACDDB - The Web Server for DNA,RNA,and Hybrids Circular Dichroism Structure

Oxepane nucleic acids: synthesis, characterization, and properties of oligonucleotides bearing a seven-membered carbohydrate ring

Overview of Sabatino D et al.

AuthorsSabatino D  Damha MJ  
AffiliationContribution from the Department of Chemistry   McGill University   Montreal   Quebec   Canada.  
JournalJ Am Chem Soc
Year 2007

Abstract


The synthesis and properties of oxepane nucleic acids (ONAs) are described. ONAs are sugar-phosphate oligomers in which the pentofuranose ring of DNA and RNA is replaced with a seven-membered (oxepane) sugar ring. The oxepane nucleoside monomers were prepared from the ring expansion reaction of a cyclopropanated glycal, 1, and their conversion into phosphoramidite derivatives allowed efficient assembly of ONAs on a solid support. ONAs (oT15 and oA15) were found to be much more resistant toward nuclease degradation than natural DNA (dT15 and dA15) in fetal bovine serum (FBS) after 24 h of incubation at 37 degrees C. ONAs also display several attributes in common with the naturally occurring DNA. For example, oT15 exhibited cross-pairing with complementary RNA to give a duplex (oT15/rA15) whose conformation evaluated by CD spectroscopy very closely matched that of the natural DNA/RNA hybrid (dT15/rA15). Furthermore, oT15 was found to elicit Escherichia coli RNase H-mediated degradation of the rA15 strand. When we compared the rates of RNase H-mediated degradation induced by 5- (furanose, dT15), 6- (2'-enopyranose, pT18), and 7-membered (oxepane, oT15) ring oligonucleotides at a temperature that ensures maximum duplex population (10 degrees C), the following trend was observed: dT15 >> oT15 > pT18. The wider implications of these results are discussed in the context of our current understanding of the catalytic mechanism of the enzyme. The homopolymer oT15 also paired with its oxepane complement, oA15, to form a duplex structure that was different [as assessed by circular dichroic (CD) spectroscopy] and of lower thermal stability relative to the native dT15/dA15 hybrid. Hence, ONAs are useful tools for biological studies and provide new insights into the structure and function of natural and alternative genetic systems.