NACDDB - The Web Server for DNA,RNA,and Hybrids Circular Dichroism Structure

Hydration changes accompanying nucleic acid intercalation reactions:volumetric characterizations

Overview of Han F et al.

AuthorsHan F  Chalikian TV  
AffiliationDepartment of Pharmaceutical Sciences   Leslie Dan Faculty of Pharmacy   University of Toronto   19 Russell Street   Toronto   Ontario M5S 2S2   Canada.  
JournalJ Am Chem Soc
Year 2003

Abstract


We use high precision ultrasonic velocimetric and densimetric techniques to determine at 25 degrees C the changes in volume, deltaV, and adiabatic compressibility, deltaK(S), that accompany the binding of ethidium to the poly(rA)poly(rU), poly(dAdT)poly(dAdT), poly(dGdC)poly(dGdC), and poly(dIdC)poly(dIdC) duplexes, as well as to the poly(rU)poly(rA)poly(rU) triplex. The binding of ethidium to each of the duplexes and the triplex is accompanied by negative changes in volume, deltaV, and adiabatic compressibility, deltaK(S). We discuss the basis for relating macroscopic and microscopic properties, particularly, emphasizing how measured changes in volume and compressibility can be quantitatively interpreted in terms of the differential hydration properties of DNA and RNA structures in their ligand-free and ligand-bound states. We also estimate the entropic cost of intercalation-induced changes in hydration of each of the nucleic acid structures and the drug. In general, our results emphasize the vital role of hydration in modulating the energetics of drug-DNA binding, while also underscoring the fact that hydration must be carefully taken into account in analysis and prediction of the energetics of nucleic acid recognition.