Monomolecular G-quadruplex structures with inversion of polarity sites: new topologies and potentiality
Overview of Virgilio A et al.
Authors | Virgilio A  Russo A  Amato T  Russo G  Mayol L  Esposito V  Galeone A   |
---|---|
Affiliation | Dipartimento di Farmacia   Università degli Studi di Napoli Federico II   Via D. Montesano 49   80131 Napoli   Italy.   |
Journal | Nucleic Acids Res |
Year | 2017 |
Abstract
In this paper, we report investigations, based on circular dichroism, nuclear magnetic resonance spectroscopy and electrophoresis methods, on three oligonucleotide sequences, each containing one 3'-3' and two 5'-5' inversion of polarity sites, and four G-runs with a variable number of residues, namely two, three and four (mTG2T, mTG3T and mTG4T with sequence 3'-TGnT-5'-5'-TGnT-3'-3'-TGnT-5'-5'-TGnT-3' in which n = 2, 3 and 4, respectively), in comparison with their canonical counterparts (TGnT)4 (n = 2, 3 and 4). Oligonucleotides mTG3T and mTG4T have been proven to form very stable unprecedented monomolecular parallel G-quadruplex structures, characterized by three side loops containing the inversion of polarity sites. Both G-quadruplexes have shown an all-syn G-tetrad, while the other guanosines adopt anti glycosidic conformations. All oligonucleotides investigated have shown a noteworthy antiproliferative activity against lung cancer cell line Calu 6 and colorectal cancer cell line HCT-116 p53-/-. Interestingly, mTG3T and mTG4T have proven to be mostly resistant to nucleases in a fetal bovine serum assay. The whole of the data suggest the involvement of specific pathways and targets for the biological activity.