Modomics - A Database of RNA Modifications

Published on May 31, 2005 in Biochemistry volume 44.

PubMed ID: 15910006


Abstract:

The human MOCS3 protein contains an N-terminal domain similar to the Escherichia coli MoeB protein and a C-terminal segment displaying similarities to the sulfurtransferase rhodanese. MOCS3 is proposed to catalyze both the adenylation and the subsequent generation of a thiocarboxylate group at the C-terminus of the smaller subunit of molybdopterin (MPT) synthase during Moco biosynthesis in humans. Recent studies have shown that the MOCS3 rhodanese-like domain (MOCS3-RLD) catalyzes the transfer of sulfur from thiosulfate to cyanide and is also able to provide the sulfur for the thiocarboxylation of MOCS2A in a defined in vitro system for the generation of MPT from precursor Z. MOCS3-RLD contains four cysteine residues of which only C412 in the six amino acid active loop is conserved in homologous proteins from other organisms. ESI-MS/MS studies gave direct evidence for the formation of a persulfide group that is exclusively formed on C412. Simultaneous mutagenesis of the remaining three cysteine residues showed that none of them is involved in the sulfur transfer reaction in vitro. A disulfide bridge was identified to be formed between C316 and C324, and possible roles of the three noncatalytic cysteine residues are discussed. By ESI-MS/MS a partially gluconoylated N-terminus of the His6-tagged MOCS3-RLD was identified (mass increment of 178 Da) which resulted in a heterogeneity of the protein but did not influence sulfurtransferase activity.


This publication refers to following proteins: