DNAmoreDB - A Database of Deoxyribozymes

Published on 2007 in PLoS ONE volume 2 issue 11.

PubMed ID: 18030352

DOI:10.1371/journal.pone.0001224

Abstract:

Most NAE (nucleic acid enzyme) sensors are composed of an RNA-cleaving catalytic motif and an aptameric receptor. They operate by activating or repressing the catalytic activity of a relevant NAE through the conformational change in the aptamer upon target binding. To transduce a molecular recognition event to a fluorescence signal, a fluorophore-quencher pair is attached to opposite ends of the RNA substrate such that when the NAE cleaves the substrate, an increased level of fluorescence can be generated. However, almost all NAE sensors to date harbor either NAEs that cannot accommodate a fluorophore-quencher pair near the cleavage site or those that can accept such a modification but require divalent transition metal ions for catalysis. Therefore, the signaling magnitude and the versatility of current NAE sensors might not suffice for analytical and biological applications. Here we report an RNA-cleaving DNA enzyme, termed ‘MgZ’, which depends on Mg2+ for its activity and can accommodate bulky dye moieties next to the cleavage site. MgZ was created by in vitro selection. The selection scheme entailed acidic buffering and ethanol-based reaction stoppage to remove selfish DNAs. Characterization of MgZ revealed a three-way junction structure, a cleavage rate of 1 min−1, and 26-fold fluorescence enhancement. Two ligand-responsive NAE sensors were rationally designed by linking an aptamer sequence to the substrate of MgZ. In the absence of the target, the aptamer-linked substrate is locked into a conformation that prohibits MgZ from accessing the substrate. In the presence of the target, the aptamer releases the substrate, which induces MgZ-mediated RNA cleavage. The discovery of MgZ and the introduction of the above NAE sensor design strategy should facilitate future efforts in sensor engineering.



DNAzymes linked to this article:

Name Isolated sequence Length Reaction
MgZ-9 TCAAAGAGTTGAATGAGGGGGTCGCTGGGTTCTGGGGCGGGATTCATTCGAGTAGGGGGGGTA      63 RNA cleavage
MgZ-2 TCGACCAGGTCGGGGCCTGGAGGGGAGGCTATGCGAAGGTTTGGTGACGAGGCTGTAGGTCGGA      64 RNA cleavage
MgZ-8 TCAACCAGGTCGGGGCCCGGAGGGGAGGCTATGCGAAGGTTTGGTGACGAAGCTGTAGGTCGGA      64 RNA cleavage
MgZ-11 TCAACCAGGTCGGGGCCCGGAGGGGAGGCTATGTGAAGGTTTGGTGACGAAGTTGTAGGTCGGA      64 RNA cleavage
MgZ-5 TCAACCAGGTCGGGGCCGAAATATAATAGAAAGTGAAGATGTTTTGGGAGGCTAAGCTAGGAAG      64 RNA cleavage
MgZ-7 TCAAGGATTATTACCAGGTCGGGGCCAAATTAACGGGTATTGACATCGAGTTAATTAGGGAGGC      64 RNA cleavage
MgZ GAACCAGGTCGGGGCCGAAATATAGGATATTTTGGGAGGCTATGCTAGG      49 RNA cleavage
MgZ-1 TCAAAGAGTCGAATGAGGGGGTCGCTGGGTTCTGGGGCGGGATCTATTCGAGTAAGGGGGAGTA      64 RNA cleavage
MgZ-3 TCAAAGAGTCGAATGAGGGGGTCGCTGGGTTCTGGGGCGTGATTCATTTGAGTAAGGGGGGGTA      64 RNA cleavage
MgZ-4 TCAAAGAGTCGAATGAGGGGGTCGCTGGGTTCTGGGGCGGGATTCATTCGAGTAAGGGGGGGTA      64 RNA cleavage
MgZ-6 TCAAGAGTCGAATGAGGGGGTCGCTGGGTTCTGGGGCGGGATTCATTCGAGTAAGGGGGAGTA      63 RNA cleavage
G12SD-2 TCAATGTAATCAAATGTCGTGAAGGGGTTTTGACGCCAGAGGGCGGAAATGTAAGGAGGATTGG      64 RNA cleavage
G12SD-4 TCAATATAATCAAATGTCGTGAAGGGGTTTTGACGCTAGAGGGCGGAAATGTAAGGAGGATTGG      64 RNA cleavage
G12SD-5 TCAATGTAATCAAATGTCGTGAAGGGGTTTTGACGCCAGAGGGCGGAAATGTAAGGAGGATTGG      64 RNA cleavage
G12SD-6 TCTATGTAATCAAATGTCGTGAAGGGGTTTTGACGCCAGAGGGCGGAAATGTAAGGAGGATTGG      64 RNA cleavage
G12SD-9 TCAATGTAATCAAATGTCGTGAAGGGGTTTTGACGCCAGAGGGCGGAAATGTAAGGAGGATTGG      64 RNA cleavage
G12SD-14 TCAATGTAATCAAATGTCGTGAAGGGGTTTTGACGCTAGAGGGCGGAAATGTAAGGAGGATTGG      64 RNA cleavage
G12SD-16 TCAATGTAATCAAATGTCGTGAAGGGGTTTCGACGCTAGGGGGCGGAGATGTAAGGAGGGTTGG      64 RNA cleavage
G12SD-18 TCAATGTAATCAAATGTCGTGAAGGGGTTTTGACGCTAGAGGGCGGAAATGTAAGGAGGATTGG      64 RNA cleavage
G12SD-19 TCAATGTAATCAAATGTCGTGAAGGGGTTTTGACGCCAGAGGGCGGAAATGTAAGGAGGATTGG      64 RNA cleavage
G12SD-20 TCAATGTAATCAAATGTCGTGAAGGGGTTTTGACGCCAGAGGGCGGAAATGTAAGGAGGATTGG      64 RNA cleavage
G12SD-1 TCAACTGAACTATCTGGGGCAATCAGAGAATCGTAGGGTTTGAGGTTCGGTGGGTAGCATGGA      63 RNA cleavage
G12SD-3 TCAACTGAGCTATCTGGGGCAATCAGAGAAATTGTAGGGTTTGAGGTTCGGTGGGTAGCACGGA      64 RNA cleavage
G12SD-7 TCAACTGAACTACCTGGGGCAGTCAGAGAATCGTAGGGTTTGAGGTTCGGTGGGTAGCACGGA      63 RNA cleavage
G12SD-8 TCAACTGAACTGTCTGGGGCAATCAGGGAATCGTAGGGTTTGAGGTTCGGTGGGTAGCACGGA      63 RNA cleavage
G12SD-10 CCAATTGAACTATTTGGGGCAATCAGAGAAATCGTAGGGTTTGAGGTTCGGTGGGTAGCATGGG      64 RNA cleavage
G12SD-11 TTAACCGAGCTATCTGGGGCAATCGGAGAATCGTAGGGTTTGAGGTTCGGTGGGTAGCATGGA      63 RNA cleavage
G12SD-15 TCAACTGGACTATCTGGGGCAATCAGAGAATCGTAGGGTCTGAGGTTCGGTGGGTAGCATGGA      63 RNA cleavage
G12SD-17 TTAACTGAACTATCTGGGGCAATCGGAGGAATCGTAGGGTTTGAGGTTCGGTGGGTAGCATGGA      64 RNA cleavage
G12SD-12 TCAAGAATGTGGGGGGAAAGGGGGAAGGGGGGCAAAGGACGGAGTGGGGTATGCGCATCGAAGG      64 RNA cleavage
G12SD-13 TCAAAAATCGGAAGGGGGTGGGCTGGAGTTGAGCACGGCCTCTAGGTGACAGTAACAAAAGGGG      64 RNA cleavage
G12SD-21 TCGATAGGGGGGTTGGGCAGATTGAAGAGTTATTAAGGTCAGTCAATCGGGGAGGCTAGGCAAG      64 RNA cleavage
Copyright © Genesilico - All rights reserved
This website is free, open to all users and there is no login required.
If you have any advice or suggestions for corrections or improvements, please contact: Almudena Ponce Salvatierra