Bujnicki lab - DATABASES
  • RNA has recently emerged as an attractive target for new drug development. Our team is developing new methods to study the interactions between RNA and ligands. Recently, we have developed a new machine learning method called AnnapuRNA to predict how small chemical molecules interact with structured RNA molecules. Research published in PLoS Comput Biol. 2021 Feb 1;17(2):e1008309. doi: 10.1371/journal.pcbi.1008309. Read More
  • 1

About Laboratory Of Bioinformatics And Protein Engineering

Our group is involved in theoretical and experimental research on nucleic acids and proteins. The current focus is on RNA sequence-structure-function relationships (in particular 3D modeling), RNA-protein complexes, and enzymes acting on RNA.
 
We study the rules that govern the sequence-structure-function relationships in proteins and nucleic acids and use the acquired knowledge to predict structures and functions for uncharacterized gene products, to alter the known structures and functions of proteins and RNAs and to engineer molecules with new properties.
 
Our key strength is in the integration of various types of theoretical and experimental analyses. We develop and use computer programs for modeling of protein three-dimensional structures based on heterogenous, low-resolution, noisy and ambivalent experimental data. We are also involved in genome-scale phylogenetic analyses, with the focus on identification of proteins that belong to particular families. Subsequently, we characterize experimentally the function of the most interesting new genes/proteins identified by bioinformatics. We also use theoretical predictions to guide protein engineering, using rational and random approaches. Our ultimate goal is to identify complete sets of enzymes involved in particular metabolic pathways (e.g. RNA modification, DNA repair) and to design proteins with new properties, in particular enzymes with new useful functions, which have not been observed in the nature.
 
We are well-equipped with respect to both theoretical and experimental analyses. Our lab offers excellent environment for training of young researchers in both bioinformatics and molecular biology/biochemistry of protein-nucleic acid interactions.


More Good Science

MODOMICS: a database of RNA modification pathways
MODOMICS is the first comprehesive database system for systems biology of RNA modification. It integrates information about the chemical structure of modified nucleosides, their localization in RNA sequences, pathways of their biosynthesis and enzymes that carry out the respective reactions (including the available protein sequence and structure data). It also provides literature information, and links to other databases. The database can be queried by the type of nucleoside (e.g. A, G, C, U, I, m1A, nm5s2U etc.), type of RNA, position of a particular nucleoside, type of reaction (e.g. methylation, thiolation, deamination, etc.), and name or sequence of an enzyme of interest. Options for data presentation include graphs of pathways involving the query nucleoside, multiple sequence alignments of RNA sequences and tabular forms with enzyme and literatiure data. The contents of MODOMICS can be accessed through the World Wide Web at http://genesilico.pl/modomics/


REPAIRtoire
REPAIRtoire is an online database for systems biology of DNA damage and repair. The database collects and organizes the following types of information: (i) DNA damage linked to environmental mutagenic and cytotoxic agents, (ii) pathways comprising individual processes and enzymatic reactions involved in the removal of damage, (iii) proteins participating in DNA repair and (iv) diseases correlated with mutations in genes encoding DNA repair proteins. The DNA repair and tolerance pathways are represented as graphs and in tabular form with descriptions of each repair step and corresponding proteins, and individual entries are cross-referenced to supporting literature and primary databases. In addition, a tool for drawing custom DNA-protein complexes is available online.


SpliProt3D
SpliProt3D is an online database of representative experimentally determined and computationally predicted structures of proteins of the human spliceosome.

 

RNA Bricks
The RNA Bricks database stores information about recurrent RNA 3D motifs and their interactions, found in experimentally determined RNA structures and in RNA-protein complexes. RNA motifs, i.e. ‘RNA bricks’ are presented in the molecular environment, in which they were determined, including RNA, protein, metal ions, water molecules, and ligands. All nucleotide residues in RNA bricks are annotated with structural quality scores that describe real-space correlation coefficients with the electron density data (if available), backbone geometry and possible steric conflicts, which can be used to identify poorly modeled residues. The database is also equipped with an algorithm for 3D motif search and comparison. The algorithm compares spatial positions of backbone atoms of the user-provided query structure and of stored RNA motifs, without relying on sequence or secondary structure information. This enables the identification of local structural similarities among evolutionarily related and unrelated RNA molecules. Besides, the search utility enables searching ‘RNA bricks’ according to sequence similarity, and makes it possible to identify motifs with modified ribonucleotide residues at specific positions.